Определение нодальной  точки для съёмки  с  автоматической панорамной  головкой  CLAUSS piXplorer

панорамная головка CLAUSS piXplorerДля создания панорамных снимков без параллакса необходимо правильно определить нодальную точку.

Нодальная точка является центром проекции линз (входного зрачка объектива), через который, в идеале, проходят все световые лучи от объекта. Сшивка отдельных граничных изображений может быть выполнена успешно и при отсутствии ошибок наложения только при условии, что нодальная точка будет всегда одинаковой для каждого отдельно взятого изображения.

Для поиска нодальной точки установленной  на головке фотокамере, инженерами фирмы CLAUSS были разработаны и запатентованы специальные   конструкционные решения 3D-регулировки piXplorer,, Удалось сделать так, что, несмотря на очень малые габаритные размеры, piXplorer,  регулировка осуществляется в широком диапазоне и подходит для работы с камерами различных размеров. Внимательно изучите наши рекомендации, пожалуйста.

 В начале работы установите, пожалуйста, быстросъемную переходную пластину  (которая входит в комплект поставки) на саму камеру так, чтобы края были расположены параллельно оптической оси. Согласно изображению на рисунке, предусмотрено два способа достижения этой цели. В целом, следует выбирать положение, при котором между камерой и быстросъемной пластиной обеспечивалось бы наибольшая по площади контактная поверхность.

При выборе положения сразу же за осью наклона, лучше всего придерживаться варианта изображенного в верхней части Рис.1, тогда как вариант на нижней части Рис.1 наиболее целесообразно придерживаться при выборе положения в случае, если расстояние до оси наклона является максимальным. То, какому именно окну масштабирования следует уделять внимание, будет во многом зависеть от выбранного Вами направления – пожалуйста, действуйте в направлении, указанном маленькой стрелкой.

Почти все комбинации, относящиеся к линзам камеры, работают по принципу определения точки поворота (нодальной точки), наиболее близко расположенной к соответствующей линзе, а не к фактической точке крепления камеры. В штатном режиме работы результатом будет являться то направление наблюдения камеры, которое показано на странице 8. Если, в исключительных случаях, при регулировке глубины необходимо, чтобы значение было отрицательным, то камеру следует устанавливать в противоположном для наблюдения направлении.  Теперь алгебраический знак для вертикальных углов и порядок отснятых кадров также сменится на противоположный.

Рис.1

Рис.1 Варианты установки быстросъемной переходной пластины  на камеру.


Для исключительно малоразмерных камер (с высотой оси менее 36 мм) предусмотрена специальная переходная пластина, которую также можно использовать для коррекции потенциально возможного ступенчатого стыка между штативом-треногой и осью линзы.

Согласно следующему изображению на Рис.2, быстросъемную пластину, установленную на камере, необходимо вставить в соединительную панель под нужным углом. После этого перемещайте ее параллельно оптической оси до вставки блокировочного рычажка в паз со щелчком. Для его ослабления надавите на блокировочный рычажок так, чтобы после этого пластину можно было выдвинуть из направляющей, переместив ее в противоположном направлении.

 

Рис.2

Рис.2 Порядок установки быстросъемной переходной пластины на панорамную головку piXplorer

 

Устройство piXplorer позволяет настроить фокусное расстояние величиной до 500 мм. Чем короче фокусное расстояние, тем больше угол обзора для каждого снимка, и тем меньше число изображений в каждой панораме, тем короче время съемки, но и детальное разрешение изображения при этом – тоже меньше. В случае увеличения фокусного расстояния, детальное разрешение также увеличивается. Кроме того, можно не только обозревать всю панораму целиком, но и просматривать ее отдельный увеличенный фрагмент. При удвоении фокусного расстояния, количество пикселей увеличивается в четыре раза в каждой панораме, но при этом потребуется в четыре раза больше отдельных изображений. Когда производится комбинирование и обработка нескольких сотен изображений, то панорама получается в районе одного гигапикселя. Настоятельно рекомендуем не переходить сразу к гигапиксельным проектам, поскольку лучше начать делать свои первые шаги с использованием нормального фокусного расстояния – т.е. фокусного расстояния до объекта, которое приблизительно соответствует длине диагонального экрана. Давайте сделаем традиционный малоразмерный снимок формата 36 мм х 24 мм (экран по диагонали 43 мм). Итак, фокусное расстояние здесь приблизительно составляет 50 мм. Если размер кристалла Вашей камеры (также обозначаемый как «размер матрицы» в технических данных – не путайте это понятие с понятием «количество пикселей») отличается от того, который подходит для снимков малоразмерного формата, то необходимо рассчитать соотношение длины двух изображения в виде кроп-фактора.

 

Пример: На камере D5000 (APS-C) Nicon указан размер матрицы, равный 23,6 х

15,8 мм. Кроп-фактор, в данном случае, будет равен 36: 23,6 = 1,52.

Нормальным фокусным расстоянием можно считать 50 мм: 1,52 = 33 мм, что означает необходимость выбора поля в диапазоне 30..35 мм.

Иногда кроп-фактор напрямую указывается для соответствующей модели той или иной камеры. В противном случае, необходимо применить оптическое фокусное расстояние для линз, предназначенных для снимков малоразмерного формата, и включить его в настройки piXplorer со значением, умноженным на величину кроп-фактора.

Для вышеупомянутого примера оптическое фокусное расстояние будет равным, допустим, 70 мм, что указано на линзах, соответственно, 70 мм * 1,52 = 106 мм, что и нужно задать в меню.

Углы отдельного кадра в двух съемочных положениях обозначены на обоих рисунках, представленных ниже, в виде дуги окружности. Два объекта (круглый, квадратный), выравнивание которых осуществляется относительно точки поворота, находятся на разном расстоянии друг от друга. При неправильно выполненной регулировке, можно будет наблюдать перемещение нодальной точки N вокруг поворотной точки S. Она будет менять свое положение от кадра к кадру. Вследствие этого, перспектива обоих объектов относительно друг друга также будет изменяться: На верхнем рисунке квадрат находится слева от круга, тогда как на нижнем рисунке – наоборот. Только если нодальная точка будет оставаться в пределах точки поворота (как показано на рисунке справа), то и перспектива будет оставаться неизменной.


Рис.3

Рис.3



На панорамной головке существует только одна постоянная центральная точка поворота – точка пересечения S оси панорамирования P и оси наклона T (см. рисунок выше).


Не имеет значения, в каком направлении вращаются оси: указанное пересечение всегда является стационарной точкой в данном поле.

 

Теперь необходимо обеспечить выполнение двух условий:

1) Оптическая ось O камеры должна пройти через пересечение S («регулировка по высоте»). Такого рода регулировка применима в отношении корпуса камеры, и не зависит от используемых линз.

2) Необходимо скорректировать нодальную точку N вдоль оптической оси, непосредственно в месте пересечения S («регулировка по глубине»).  Такого рода регулировка напрямую зависит от используемых линз, а в случае, если применяется вариообъектив, существует еще и зависимость от задействованного фокусного расстояния (см. рисунок ниже).

 

Полезный совет: Для большинства комбинаций, относящихся к линзам камеры, существуют таблицы, где указаны парные значения, которые подлежат регулировке.

 

Штанга камеры содержит все компоненты, необходимые для регулировки нодальной точки (см. рисунок 4). Если слегка ослабить винты с насеченной головкой 1 либо 2, которые зафиксированы болтами друг напротив друга, то это позволит поворачивать установочный диск 3 для регулировки высоты, и далее можно будет вытягивать или втягивать камерную платформу наподобие телескопа. Одновременно с этим, на диске шкалы 4 можно будет считывать показания высоты H, которая только что была отрегулирована. В случае перемещения одного из таких винтов на больший по размеру участок резьбового шпинделя, появляется и пространство для перемещения штанги камеры с целью выполнения регулировки по глубине.  Конкретное значение можно наблюдать на шкале глубины 5. Необходимо руководствоваться окном масштабирования, которое соответствует выбранному положению винта камеры.  Если снова затянуть указанные винты с насеченной головкой относительно друг друга, то можно будет выбирать величину глубины, причем настройка высоты одновременно с этим фиксируется по месту.

 

Экспериментальная оценка нодальных точек производится в два этапа следующим образом:

Рис.4

Рис.4


Чтобы выбрать идеальную позицию для оптической оси O, необходимо, прежде всего, установить гнездо головки штатива камеры по центру, непосредственно под линзами, что является нормальной практикой для повсеместно используемых камер. Это не всегда применимо лишь в случае использования небольших компактных камер, однако для последних, как правило, в таких случаях предусмотрено наличие переходной пластины, приобретаемой дополнительно.

Во-вторых, необходимо правильно определить высоту камерной линзы H и установить ее – с учетом скорректированного значения A – на piXplorer. Для получения надлежащего значения высоты допускается установить камеру на стол. Необходимо снять объектив для проведения такого измерения, после чего накрыть зеркало крышкой. Часто на центральной части крышки отсутствует какой-либо указатель, поэтому измерение высоты A и B следует выполнить, как указано ниже.

 

Полезный совет: Проводить такого рода измерительные работы лучше всего тогда, когда камера расположена на самом крае стола, однако в этом случае следует соблюдать осторожность, следя за тем, чтобы камера не упала со стола вниз!

 

Рис.5

Рис.5


Теперь необходимо рассчитать среднее значение (то есть значение высоты) при помощи следующего уравнения:

H=(A+B)/2

Поскольку теперь высота известна, можно расположить панорамную головку с установочным диском 3, как описано выше(см. Рис.4).

 

 

Регулировка по глубине – индивидуальна для каждого типа объектива ( то же самое касается регулировки и для разных значений фокусного расстояния выбранного объектива). То есть изменение фокусного расстояния - также предполагает регулировку нодальной точки по глубине. Регулировка нодальной точки производится путем ослабления винтов с насеченной головкой 1 либо 2 с одновременным перемещением штанги камеры вдоль ее манипулятора. Если требуемое значение уже определено (при помощи таблиц), его можно скорректировать по шкале 5. В противном случае, следует измерить приблизительное расстояние между гнездом головки штатива и кольцом управления диафрагмой линзы в миллиметрах. Необходимо отрегулировать вариообъектив на нужное фокусное расстояние. Это значение может использоваться как временное, однако позже необходимо будет произвести его подтверждение и выверку (см. ниже рис. 6).

 

У фотообъективов со средним по величине фокусным расстоянием нодальная точка расположена приблизительно на уровне ирисовой диафрагмы объектива, а нодальная точка у тех фотолинз, у которых фокусное расстояние удлиненное либо очень короткое – иногда располагается за пределами линз. При увеличении фокусного расстояния либо расстояния до объекта, роль, которую играет регулировка глубины, становится еще менее значимой. Поэтому крупные длиннофокусные объективы часто устанавливают в панорамной головке без выполнения надлежащей регулировки глубины.

 

Ниже приведено описание процедуры подбора точного значения глубины экспериментальным путем. Следовать указанной процедуре рекомендуется только тем пользователям, кто хорошо знаком со всеми нюансами по управлению панорамной головкой.

Выполнение расчетов такого рода может потребовать немного терпения при проведении систематического тестирования. В первую очередь, необходимо организовать «испытательный полигон», состоящий из объекта на большом расстоянии от Вас, и объекта, находящегося вблизи.  То, какое расстояние выбрать, зависит от величины фокусного расстояния. Золотое правило для такого случая следующее: Максимально затемните линзу диафрагмой, чтобы получить большую глубину резкости, а затем выдерживайте фокусировку на бесконечность, отключив функцию автофокусировки. Нижний предел глубины резкости (см. кольцо управления диафрагмой) может использоваться в качестве искомого значения расстояния до приближенного объекта. Удаленный объект должен быть в два раза дальше, чем самое высокое заявленное значение фокусировки, имеющееся перед значением бесконечности. Должна обеспечиваться возможность соотнести оба объекта относительно друг друга. Классический способ заключается в следующем: Закрепите отвес со шнуром на оконную раму и используйте его в качестве приближенного объекта. В качестве удаленного объекта можно использовать конек крыши расположенного рядом здания, его бельведер или же опору высоковольтной линии (рис.6,А).

Теперь установите piXplorer с камерой на штатив на подходящей высоте.  После включения piXplorer манипулятор камеры перемещается в горизонтальное положение.  Затем переместите или поверните штатив так, чтобы оба объекта стали видны и при этом совмещены на левой стороне видоискателя камеры.

 

Если после этого медленно повернуть сервоприводную головку piXplorer в направлении налево (кнопка ◄), то оба объекта должны при этом сместиться к правому краю видоискателя камеры. При правильной регулировке глубины, положение двух объектов относительно друг друга будет оставаться прежним – они все так же должны совмещаться при достижении правого угла. В противном случае, Вам потребуется скорректировать глубину

– путем ее увеличения (переместив камеру назад), если более дальний объект можно наблюдать с левой стороны более близкого объекта,

– путем ее минимизации (переместив камеру вперед), если более дальний объект можно наблюдать с правой стороны более близкого объекта.

 

На рисунках ниже продемонстрирован параллакс с неверными настройками (Рис.6, В) и с правильно выполненными настройками (Рис.6,Б).

 

Рис.6

Рис.6

 

Полезный совет: Можно достичь результата, отличающегося еще большей точностью, если четко выполнять описанную выше процедуру, одновременно используя цифровой дисплей с соответствующей функцией масштабирования. Существует определенное соответствие между уже внесенными в значение глубины изменениями, выраженными в миллиметрах, и соответствующим сдвигом объектов в пикселях, поэтому нужную настройку можно без особого труда подобрать, если совершать систематические попытки с последующей интерпретацией.